Environments#
damask_parse#
We used our CentOS docker image (orgs/hpcflow) to produce a “relocatable” conda environment for the damask_parse MatFlow environment, using conda-pack. Using the CentOS image is required because of glibc compatibilities.
In the container:
Install Miniconda via the bash installation script: https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
Initialise conda for use in the shell:
conda init
Reload .bashrc:
source ~/.bashrc
Install conda pack:
conda install conda-pack
Create a new conda environment that contains
damask-parse
andmatflow
:conda create -n matflow_damask_parse_v3a7_env python=3.10
Install
libGL
for VTK (required by the damask python package)yum install mesa-libGL
Activate the environment:
conda activate matflow_damask_parse_v3a7_env
Add packages via pip:
pip install matflow-new damask-parse
Deactivate the environment:
conda deactivate
Pack the environment into a tarball:
conda pack matflow_damask_parse_v3a7_env
Save the resulting compressed file outside of the container and transfer to the target machine
On the target machine:
Unpack the environment:
mkdir matflow_damask_parse_v3a7_env tar -xzf matflow_damask_parse_v3a7_env.tar.gz -C matflow_damask_parse_v3a7_env
Activate the environment:
source matflow_damask_parse_v3a7_env/bin/activate
Run:
conda-unpack
The environment can now be activated as normal using the
source
command above.
Resources:
Example environment definition#
name: damask_parse_env
setup: |
conda activate matflow_damask_parse_env
executables:
- label: python
instances:
- command: python
num_cores: 1
parallel_mode: null
damask#
Example environment definition#
name: damask_env
executables:
- label: damask_grid
instances:
- command: docker run --rm --interactive --volume ${PWD}:/wd --env OMP_NUM_THREADS=1 eisenforschung/damask-grid:3.0.0-alpha7
parallel_mode: null
num_cores: 1