Environments#
matlab_env#
Example environment definition (non-compiled script)#
MTEX tasks have a compile input parameter, which is False by default. When compile is False, the run_mtex executable must be defined in the matlab_env, as shown below.
The MATLAB -batch switch is used, and is documented here for Windows, MacOS, and Linux.
So far, this is tested only on Windows.
- name: matlab_env
executables:
- label: run_mtex
instances:
- command: matlab -batch "<<script_name_no_ext>> <<args>>"
num_cores: 1
parallel_mode: null
Example environment definition (compiled script)#
MTEX tasks have a compile input parameter, which is False by default. When compile is True, both the compile_mtex and run_compiled_mtex executables must be defined in the matlab_env, as shown below.
So far, this is tested only on Linux.
- name: matlab_env
setup: |
# set up commands (e.g. `module load ...`)
executables:
- label: compile_mtex
instances:
- command: compile-mtex <<script_name>> <<args>> # steps to compile the script
num_cores: 1
parallel_mode: null
- label: run_compiled_mtex
instances:
- command: ./run_<<script_name>>.sh $MATLAB_HOME <<args>>
num_cores: 1
parallel_mode: null
damask_parse#
We used our CentOS docker image (orgs/hpcflow) to produce a “relocatable” conda environment for the damask_parse MatFlow environment, using conda-pack. Using the CentOS image is required because of glibc compatibilities.
In the container:
Install Miniconda via the bash installation script: https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
Initialise conda for use in the shell:
conda initReload .bashrc:
source ~/.bashrcInstall conda pack:
conda install conda-packCreate a new conda environment that contains
damask-parseandmatflow:conda create -n matflow_damask_parse_v3a7_env python=3.10Install
libGLfor VTK (required by the damask python package)yum install mesa-libGLActivate the environment:
conda activate matflow_damask_parse_v3a7_envAdd packages via pip:
pip install matflow-new damask-parseDeactivate the environment:
conda deactivatePack the environment into a tarball:
conda pack matflow_damask_parse_v3a7_envSave the resulting compressed file outside of the container and transfer to the target machine
On the target machine:
Unpack the environment:
mkdir matflow_damask_parse_v3a7_env tar -xzf matflow_damask_parse_v3a7_env.tar.gz -C matflow_damask_parse_v3a7_env
Activate the environment:
source matflow_damask_parse_v3a7_env/bin/activateRun:
conda-unpackThe environment can now be activated as normal using the
sourcecommand above.
Resources:
Example environment definition#
name: damask_parse_env
setup: |
conda activate matflow_damask_parse_env
executables:
- label: python
instances:
- command: python
num_cores: 1
parallel_mode: null
damask#
Example environment definition#
name: damask_env
executables:
- label: damask_grid
instances:
- command: docker run --rm --interactive --volume ${PWD}:/wd --env OMP_NUM_THREADS=1 eisenforschung/damask-grid:3.0.0-alpha7
parallel_mode: null
num_cores: 1