matflow.param_classes.orientations.Orientations#
- class matflow.param_classes.orientations.Orientations(data, unit_cell_alignment, representation)#
Bases:
ParameterValue
A description of the orientations of some data.
- Parameters:
data (numpy.ndarray[Any, numpy.dtype[numpy._typing._array_like._ScalarType_co]]) – The orientation data.
unit_cell_alignment (matflow.param_classes.orientations.UnitCellAlignment) – The alignment of the unit cell.
representation (matflow.param_classes.orientations.OrientationRepresentation) – The orientation representation descriptor.
Methods
Write a list (from an element group) of parameter values to an HDF5 group.
Write this parameter value to an HDF5 group.
For custom initialisation via YAML or JSON.
Load orientation data from a text file.
Generate random orientation data.
Prepare this parameter value for serialisation as JSON.
Generate random uniformly distributed unit quaternions.
Save orientation data from an HDF5 group to a persistent workflow.
Extract a parameter value from JSON data.
Serialise this parameter value as a dictionary.
Attributes
Orientation data
Alignment of the unit cell.
How the orientation data is represented.
- classmethod dump_element_group_to_HDF5_group(objs, group)#
Write a list (from an element group) of parameter values to an HDF5 group.
- Parameters:
objs (list[ParameterValue]) –
group (Group) –
- dump_to_HDF5_group(group)#
Write this parameter value to an HDF5 group.
- classmethod from_JSON_like(data, ori_format)#
For custom initialisation via YAML or JSON.
- classmethod from_file(path, representation, unit_cell_alignment, *, number=None, start_index=0, delimiter=' ')#
Load orientation data from a text file.
- Parameters:
path (str) – Path to the file to load from.
representation (dict) – Description of how the orientation data is arranged.
unit_cell_alignment (UnitCellAlignment) – How the unit cell is aligned.
number (int | None) – Number of orientations to read from the file.
start_index (int) – The line number of the file that the orientations start at. Allows skipping headers.
delimiter (str) – The delimiter separating values in the file. Defaults to space, but commas and tabs are also sensible (and correspond to CSV and TSV files respectively).
- Return type:
- classmethod from_random(number)#
Generate random orientation data.
- prepare_JSON_dump()#
Prepare this parameter value for serialisation as JSON.
- static quat_sample_random(number)#
Generate random uniformly distributed unit quaternions.
- Parameters:
number (int) – How many quaternions to generate.
- Returns:
quats
- Return type:
ndarray, shape (number, 4)
References
https://stackoverflow.com/a/44031492/5042280 http://planning.cs.uiuc.edu/node198.html
- representation: OrientationRepresentation#
How the orientation data is represented.
- classmethod save_from_HDF5_group(group, param_id, workflow)#
Save orientation data from an HDF5 group to a persistent workflow.
Note
We avoid loading the data into memory all at once by firstly generating an Orientations object with a small data array, and then copying from the HDF5 group directly into the newly created Zarr group.
We assume that the workflow is using a Zarr datastore. This is not checked!
- Parameters:
param_id (int) –
- classmethod save_from_JSON(data, param_id, workflow)#
Extract a parameter value from JSON data.
- unit_cell_alignment: UnitCellAlignment#
Alignment of the unit cell.