matflow.param_classes.orientations.Orientations#

class matflow.param_classes.orientations.Orientations(data, unit_cell_alignment, representation)#

Bases: ParameterValue

A description of the orientations of some data.

Parameters:

Methods

dump_element_group_to_HDF5_group

Write a list (from an element group) of parameter values to an HDF5 group.

dump_to_HDF5_group

Write this parameter value to an HDF5 group.

from_JSON_like

For custom initialisation via YAML or JSON.

from_file

Load orientation data from a text file.

from_random

Generate random orientation data.

prepare_JSON_dump

Prepare this parameter value for serialisation as JSON.

quat_sample_random

Generate random uniformly distributed unit quaternions.

save_from_HDF5_group

Save orientation data from an HDF5 group to a persistent workflow.

save_from_JSON

Extract a parameter value from JSON data.

to_dict

Serialise this parameter value as a dictionary.

Attributes

data

Orientation data

unit_cell_alignment

Alignment of the unit cell.

representation

How the orientation data is represented.

data: ndarray[Any, dtype[_ScalarType_co]]#

Orientation data

classmethod dump_element_group_to_HDF5_group(objs, group)#

Write a list (from an element group) of parameter values to an HDF5 group.

Parameters:
dump_to_HDF5_group(group)#

Write this parameter value to an HDF5 group.

classmethod from_JSON_like(data, ori_format)#

For custom initialisation via YAML or JSON.

Parameters:
Return type:

Self

classmethod from_file(path, representation, unit_cell_alignment, *, number=None, start_index=0, delimiter=' ')#

Load orientation data from a text file.

Parameters:
  • path (str) – Path to the file to load from.

  • representation (dict) – Description of how the orientation data is arranged.

  • unit_cell_alignment (UnitCellAlignment) – How the unit cell is aligned.

  • number (int | None) – Number of orientations to read from the file.

  • start_index (int) – The line number of the file that the orientations start at. Allows skipping headers.

  • delimiter (str) – The delimiter separating values in the file. Defaults to space, but commas and tabs are also sensible (and correspond to CSV and TSV files respectively).

Return type:

Self

classmethod from_random(number)#

Generate random orientation data.

Parameters:

number (int) – The number of orientations to generate.

Return type:

Self

prepare_JSON_dump()#

Prepare this parameter value for serialisation as JSON.

Return type:

dict[str, Any]

static quat_sample_random(number)#

Generate random uniformly distributed unit quaternions.

Parameters:

number (int) – How many quaternions to generate.

Returns:

quats

Return type:

ndarray, shape (number, 4)

References

https://stackoverflow.com/a/44031492/5042280 http://planning.cs.uiuc.edu/node198.html

representation: OrientationRepresentation#

How the orientation data is represented.

classmethod save_from_HDF5_group(group, param_id, workflow)#

Save orientation data from an HDF5 group to a persistent workflow.

Note

We avoid loading the data into memory all at once by firstly generating an Orientations object with a small data array, and then copying from the HDF5 group directly into the newly created Zarr group.

We assume that the workflow is using a Zarr datastore. This is not checked!

Parameters:

param_id (int) –

classmethod save_from_JSON(data, param_id, workflow)#

Extract a parameter value from JSON data.

Parameters:
to_dict()#

Serialise this parameter value as a dictionary.

Return type:

dict[str, Any]

unit_cell_alignment: UnitCellAlignment#

Alignment of the unit cell.