matflow.param_classes.seeds.MicrostructureSeeds#

class matflow.param_classes.seeds.MicrostructureSeeds(position, box_size, phase_label, orientations=None, random_seed=None)#

Bases: ParameterValue

The seeds for crystalline microstructure.

Methods

dump_element_group_to_HDF5_group

Write a list (from an element group) of parameter values to an HDF5 group.

dump_to_HDF5_group

Write this parameter value to an HDF5 group.

from_JSON_like

For custom initialisation via YAML or JSON.

from_file

Load a microstructure definition from a text file.

from_random

Generate a random microstructure.

prepare_JSON_dump

Prepare this parameter value for serialisation as JSON.

save_from_HDF5_group

Extract a parameter value from an HDF5 group.

save_from_JSON

Extract a parameter value from JSON data.

show

Plot the microstructure.

to_dict

Serialise this parameter value as a dictionary.

Attributes

num_seeds

The number of seeds.

orientations

Orientation data.

random_seed

Seed for the random number generator, if used.

position

The positions of the seeds.

box_size

The size of box containing the seeds.

phase_label

Label for the phase.

Parameters:
box_size: NDArray#

The size of box containing the seeds.

classmethod dump_element_group_to_HDF5_group(objs, group)#

Write a list (from an element group) of parameter values to an HDF5 group.

Parameters:
dump_to_HDF5_group(group)#

Write this parameter value to an HDF5 group.

Parameters:

group (Group) –

classmethod from_JSON_like(position, orientations=None, **kwargs)#

For custom initialisation via YAML or JSON.

Parameters:
Return type:

Self

classmethod from_file(path, box_size, phase_label, *, number=None, start_index=0, delimiter=' ')#

Load a microstructure definition from a text file.

Parameters:
  • path (str) – Path to the file to load from.

  • box_size (ndarray[Any, dtype[_ScalarType_co]]) – The size of box containing the microstructure.

  • phase_label (str) – Label for the microstructure.

  • number (int | None) – Number of seeds to read from the file.

  • start_index (int) – The line number of the file that the seeds start at. Allows skipping headers.

  • delimiter (str) – The delimiter separating values in the file. Defaults to space, but commas and tabs are also sensible (and correspond to CSV and TSV files respectively).

Return type:

Self

classmethod from_random(num_seeds, box_size, phase_label, *, random_seed=None, orientations=None)#

Generate a random microstructure.

Parameters:
  • num_seeds (int) – The number of seeds for the microstructure.

  • box_size (ndarray[Any, dtype[_ScalarType_co]]) – The size of box containing the microstructure.

  • phase_label (str) – Label for the microstructure.

  • random_seed (int | None) – Seed for the random number generator.

  • orientations (Orientations | dict[str, Any] | None) – Orientation information. If omitted, random.

Return type:

Self

property num_seeds: int#

The number of seeds.

orientations: Orientations | None = None#

Orientation data.

phase_label: str#

Label for the phase.

position: NDArray#

The positions of the seeds.

prepare_JSON_dump()#

Prepare this parameter value for serialisation as JSON.

Return type:

dict[str, Any]

random_seed: int | None = None#

Seed for the random number generator, if used.

classmethod save_from_HDF5_group(group, param_id, workflow)#

Extract a parameter value from an HDF5 group.

Parameters:
  • group (Group) –

  • param_id (int) –

  • workflow (Workflow) –

classmethod save_from_JSON(data, param_id, workflow)#

Extract a parameter value from JSON data.

Parameters:
show()#

Plot the microstructure.

Note

Requires matplotlib to be installed and configured.

Return type:

None

to_dict()#

Serialise this parameter value as a dictionary.

Return type:

dict[str, Any]